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THE PROBLEM OF CONTROt UNDER CONDITIONS OF INCOMPLETE INFORMATIQN' 

N .N - xRAsovsxxL 

‘.Sx problem of controlling a difterentia 1 sy3tem under conditions of 
incomplete infarmation on the disturbance end phase states of the object, 
is considered, The problem is formalized as a problem of controlling an 
evolutionary system whose states are described by the information variable 
and which is solved by the method of programmed stochastic synthesis /l, 
2J* The purpose this paper is to illustrate the application of the method 
tc such problems. 

1, Let us consider a controlled object whose state at it given instant t is defined by 
the n-dimensional phase vector sit] = (q[1], i = I,...,@, The object is acted upon byacontrol 
~[t] and disturbance b[Z]. The control is r-dimensional vector u m {ILj,j = i,...,r) and the 

disturbance is an s-dimensional vector w = (Vj,j = 1,. , ,,s). The quantities n, r and s canbeany 
fixed natural numbers. We will treat the vectors as column vectors, The motion of the object 

3 If@ I-l@1 = fs if]* tn < t < 6) occurs within a given time interval S,< t <# and is described 
by the differential equation 

r- = A It) P i_ B @) & c C ftf ?? Cf) 

where A (t),B(t),C(t) are continuous matrix functions. The motion can begin from any position 

{to, 50). The Borel-measurable realizations of the control u(tO[.J6] = (u[t], to< t Q@} and 
disturbance u&I-161 = (@[t& t,< t <,<6) are admissible, Every admissible realization is 
bounded in module over ta(b<E-6 by its own constant. The process 

r*1irrr 
fs I&I r*1*1* ZJ @a I"1 at, g (&I 

is realized with the help oi the quality index 

Here @(t,~) and y&u) are positive definite quadratic farms continuous in t, and lzl 
is the Euclidean norm of the vector 5. 

In fact, the problem consists of constrwting a control uft] resulting in the smallest 
possiblevalueof TX- 

We shall assume that the information concerning the states 5 rt1 is made available with 
a distortion of a certain n-dimensional vector variable z*fl]. We also assume thnt the spent 
control ’ u[t] can be stored. Let us introduce the variable 

which we will calf the information disturbance_ Here X it*%] is the fundamental mai23.x of 
solutions fo'r the homogeneous equation x* = A @]s. We will choase the quantity 

Y [tl, = IQ [to [+I t1, u 00 IsI m (1.4) 
as the information variable. It consists of samples of the information disturbance ~[E,{.]t]=r 

&fr7, to G 3 2< $1 and the control IL (l,{-fb] = {afsj, t,<%<Q which have occurred up to the 
instant t. Let us postulate the piecewise continuous samples gft,f*]*]. 

We shall call the strategy F.G(*) the function 

s (*) = OJ (u @I, e), 2, Q c *= 6, e >u, (1.51 

defined for every tE[t,,@) for all possible values of ~[t] and the constants e>& The 
control law U is defined for the interval t, <t<<, t, E[t,,6) as a combination of three 
components 
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The motion of the object I [t.+ [.]a] = {X [t], t*.< t <a}. g enerated by the control law i' 1.E 
from the position (t*, r*} is defined as the solution of the stepwise differential equation 

r' [f] = ‘4 (t) X [t] -- B (1) u (y [&I, E) A c (t) v [f], t, < t < t,,,, 1 = I. ., k (1.7) 

with initial conditions x [t*] = .r*. This motion of the object x has the corresponding motion 

Y [t* [-I *I of the information y system whose states are described by the variable y[t] (1.4) . 
Here the components q[t,[.]t,] and u (t,[.]t,] of the initial state ylt,] can be one or the 
other, depending on the previous evolution of the system. 

Let us now formalize the problem as the problem of controlling the y-system. The formal- 
ization can be constructed in one way or another, depending on the conditions of observation 
of the z-object. We shall assume that the distortion z* [t] - x[t] is estimated on the segment 
ito* 81 in the mean square. Then, using (1.2) we shall designate the following quality index 
for the y-system: 

d 

Here F (t, z), t E[&,, 6] is a positive-definite quadratic form continuous in t E (f,, 61 . 
The upper bound in (1.8) is computed over all possible motions ~1.1 = .r[t,,[.]13] and samples of 
the disturbance ~1.1 = u (to [.]I?]. 

L 2 

We shall call the quantity 

P (Vi Y [t*l) = aup Yv (Y [+I) 
ULI91 (1.9) 

the guaranteed result for the initial state y[t,] and control law u (1 
bound in computed over all possible realizations y[6] continuing the 
Here the control u[t] is formed, at t>t, according to the law Lr (1.6) 
quantity 

-6). Here the upper 
initial state y[t,]. 
. We shall call the 

P @ (.)i Y [t*l) = 512 “;; p we; y [[*I) il.101 

the guaranteed result for the strategy u (.) (1.5) and for the initial state y [t,] . Here the 
upper bound is computed over all control laws u = Ub (1.6) corresponding to the given 
strategy u(a), assigned to e>O, whose partions Aa(tt] satisfy the condition ti+r - tl < 6, 
i = 1, . . ., k. 

We shall call the strategy u"(.), satisfying the relation 

P (u” t-h Y it*]) = z’p p (u (.); y [i*]) (1.11) 

the optimal strategy for every possible initial state y[t,J 
The problem is to construct the optimal strategy IJO( Using a less stringent formula- 

tion, we can state the problem concerning the optimal guaranteed result 

PO (Y [t*l) = id P (u (.); y [t*]) 
4.) 

(1.12) 

2. Let us transform the index ~~(1.8). By Cauchy's formula we have 

x[t]=XIt,~lx[r]+ ~X[t~~l(~(~)~[vlfC(v)U[VI) dv 

to,<t<s, to<& 

From (1.31, (1.8j and (2.1) we obtain 

Q 

t2.11 

X[t,qf X[6,v]B(~)u[v]dv)]dt-~((1o,q[to]- 
1. 

~(~.,~]X[~]-~X[~~~V]C(V)V[V]~V + x-Ito,*]jX[8,v]B(v)u[v]dv)] 
Q 
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Following the method of programmed stochastic synthesis /l, 2/, we shall formulate an 
auxiliary problem on the programmed extremum CF. Let Z [4 01, zO < t <6, zO < t, define a 
standard scalar process of Brownian motion /3/ defined in some probability space (Q,fI,P). 
Let the state Y['*], be realized at some instant t.+ =[&,,@I, i.e. letahindrance q[t,,[.]t.+] = 

(q[t], tag t < z,) and control u &[.]z+] = {u [t], t, < t < z,) be realized. 
We shall assign a partition A OJ for the segment z,<t,<s, where j=l,..., k, z,= 

z*, Tj+l > zjv ‘ck = 6; k is a natural number. We will introduce an n-dimensional random vector 
quantity 1 (0) = 1 [z* [z* [.] T,]] , where the symbol z[z*[.]zJ denotes the sample 

Z [z* [.]ztJ = (Z [Tj, 01 - Z[Tj-19 a], j = 1, . . ., i), 0 E 9 

We shall also introduce an n-dimensional random vector quantity w(o) = w[z[z.+[.]z~]] 
and any s-dimensional random measurable vector function u (t, 0) = v [k Z [z, [.I Q]], 1, < t s 8, 
0 E 8. We shall call the non-anticipatory functions /3/ 

P (‘9 ml = Q It7 z IT* [‘I ziJ]t u tt, 0) = U [tv Z [t* [‘I Tj]] 
ZI < t Q zi+l, i = 1, . . ., k, o E 61 

the stochastic programmes q(.) and u(.). We put 

cp(Y[-c,],A)= sup sup idf supsup M Z'(o)w(o)+ 
IIl( 44.) UC.1 0C.j WI.) I 

(2.3) 

pw u*(t, 4)-Y(f, v(t, w,,L(t, q*(t, W)---X[h rt]w(o)- 

~“It~~lc(~)u(v.W)d.+X[t,B]~X.~6.v]~(V)U*(~~,O)dY)]X 
8 IO 

a - F (to, q* [to] - x [to, 61 w (0) -‘s x [to, v] C(v) v (v, 0) dv + 
V 

X[tov +[*, ~1 B (v)u, (~9 0) dv)} 

II l (.) II = vf {I l (4 12)P 

The symbol M(. ..) denotes the expectation and the prime denotes transposition. The 
functions u* (.) and 9* (.) are given by the equations 

u* (6 0) = {u ItI, t, < t < r,; U (t, o), T* < t < 6) 
Q* 6 4 = Iq [a t, < t < r,; q (k o), z* -=z t < 61 

We shall call the quantity q (Y[z*], A) the programmed extremum. Following the reasoning 
used to substantiate the method of programmed stochastic synthesis (see e.g. /2/), we can 
confirm the following assertion concerning the u-stability of the quantity cp. 

Lemma 1. Let the state Y[r,],r,~[t,,8] be realized, the partion A(z,} assigned, the 
instant z* = zZ E (t,,ti] recorded, and let the realization of the disturbance !7* (z* ].lTLl 
be given. Then a realization of the control u* (z,[.]~*) can be found such, that the inequal- 
ity 

cp (Y [r*l, A*) < cp (Y [G A) 
holds, where the components y[z*] generate the components y[r,] by virtue of the samples 

g* (r* [.lZ*l and u* (z* [.]?*I, and the partition AL {rj*) is connected with the partition 

A {zj) by the condition Zj* = ~j+~ with j = I,..., k - 1. Let us write 

P* (Y htl~ c) = sup cp (Y [~*I~ A) i c (2.4) 

where c is a scalar constant. Let a = 1 + mk [I] A (t) 11, t, < t < 61 where ]I A (t) II = max 1 A (t) z I 
for III=I. 

For the assigned E >0 and the given state y*[r,], we shall call the pair {y*[r,],c[~*]) 
satisfying the condition 

under the constraint 

Q [to [.I a = q* [to [.I 7*l 

11 X[T~,V]B(V)(U[V]-rz*[v])dv~ +c*<e*expW.(t-to) 
1. 

an associated pair. Here q[to[.]r,], u[t] are the components of the state Y [s*l; q* Ilo I .I 5*1. 
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u*[t] are the components of the state Y*[r,]. 
Let us determine the extremal strategy uI"l(.) from the following condition of extremal 

translation from the state Y*[r,] to the associated pair (Y,[t*], c[T*]): 

l'(Y* [r*l, s) B (T*)u['l(Y* [z*l, e) + 
%+I (Y* [T*], E) @ (T*, u[‘l (Y* [T*], e) = 

min[l’ (Y* kd E) B (Tz+c) u + .%,+I (Y* [Tel, e) @ (-Cc, I()] 

Here the (a - l)-dimensitnal vector s(y* [T*],E)= (l(y*[t,],&), ~,,_~(y*[t*], e)) is given by the 
equations 

l (Y* [r*l,s) = 1 X[ T*,v]B(v)(~*[vI--u*[T])~~ 
t, 

.%+I (Y* [%+J, e) =c [t*l 

Lemma 2. Irrespective of the value of E> 0, of the state y* [t*] and of the number N, 
a 6 >0 can be found such that whatever the disturbance 

q (% [.I T*] = {I n[t] I <N, T* <t f ~“1 
generating the component q* [t,,[.]-r,], the control 

u (Z, [.]'T*] = (u [t] = de1 (y [T*], E), T* < t < T*) 

generating the component u*(t,,[.]t*] transfers the y-system to the state y, [z*],whose associ- 
ated pair (y* [t*], c[T*]) satisfies the condition 

as long as t* -r*<<. 
P* (Y* [r*lg c [z*l) < P* (Y* [r*l, c [t*I) 

Lemmas 1 and 2 together yield the inequality 

P (U["' (.); Y [t*l) < p* (Y [t*I, 0) (2.5) 

irrespective of the initial state Y[t,]. We further confirm that the following inequality 
holds for any strategy u(.): 

P (u (.); Y It*]) 2 p* (Y [L*l, 0) (9.6) 

From (2.5) and (2.6) it follows that the extremal strategy U[P] (.) is the optimal strategy 

u" (.) ,and the following relation holds: 

P (uO (.); Y it*]) = P* (Y it*], 0) (2.7) 

The proof of the above assertions differs from those encountered in other analogous cases 
/2/ only in small details. 

3. Sect.2 implies that to solve the initial problem of optimal strategy u'(.) it is 
sufficient to solve the auxiliary problem of a programmed extremum 'p (y [T,], A) (2.3) for every 
possible state Y [T*], z* E [to,*). 

Let us describe the plan for solving this auxiliary problem. We fix the random quantity 

1 (.). Varying the random quantity w(.) and the random functions u (.), u (.), 4 (.) appearing 
in (2.3), we construct the equations expressing the necessary conditions of extremality for 
the quantity appearing in (2.3) under the symbol sups.,. The equations are obtained by equat- 
ing the corresponding variations to zero. We thereby obtain a system of linear integral 
equations for the conditional expectations 

III (I (W) 12 [‘L+ 1.1 T]), Af tW t”‘) 1 Z [t, I.1 T]) 
.I[ (0 (tv 0) t Z b, [.I T), I%’ (u (t. 0) 1 Z [T* [;jt])> 111 ((I (t, W) 1 Z [T, [.I T]} 

Let us take the random quantity l(.) in the form /3/ 

i(Q')=l[T*] f jils(rj*m): M{a(sj,o)I~[t*[.]zj-1])=0 (3.1) 

where e (zj, 0) is a non-anticipatory function 

s tTj9 0) = a [tj, Z [t* [‘I Till (3.2) 

Analysing the equations expressing the necessary conditions of extremality we find, that 
the extremal arguments w (:), " (.). u (.) and q (.), satisfying these equations, should be sought 
in the form of linear expansions in q[to[.]r,],u (tb[-IT,], I[t,] and a (TV, o) where q[.] and u [.] 
are components of y[r*]. 

Thus the function q(t, 0) e.g. should be sought in the form 
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where Qp(.),Qpo,Ql and Qa(-) are the required matrices and matrix functions of the corres- 
ponding dimensions. The linear integral equations can be found for these matrices and matrix 
functions by substituting expansions of the form (3.3) into the right-hand side of (2.3) and 
varying the resulting expression over the matrices sought. The variation is carried out in 
the same order as the maximization and minimization operations in (2.3), from left to right. 
The resulting system of equations can be solved without fundamental difficulties, and reduces 
to routine though time-consuming procedures. 

Substituting the expansions of the form (3.3) into (2.3), we arrive at the problem of 
computing the upper bound in the functions l(a) (3.1) of the known linear-quadratic functional 
L(I(.)) = L[l[r,],a (.)I. Thus the problemofcomputing the programme extremum cp (I/ IT*], A) (2.3) 
reduces to that of finding the upper bound 

cp (Y P+l~ A) = SUP 
Qr.l..o(.) 

L [L [r*l, a (.)I 

under the constraint 

(3.4 

(3.5) 

The auxiliary problem (3.4), (3.5) is identical, essentially, with the auxiliary problem 
dealt with in /2/ in connection with the solution, using the method of programmed stochastic 
synthesis, of the problem of game control when complete information is available on the phase 
states of the z-,object. In /2/ it was shown that the problem considered here reduces to the 
case when the optimal partition A has the index k<2. The present paper differs from /2/ in 
computing the parameters of the functional L(.). 

Solving the problem (3.41, (3.5) by means of the method described in /2/, we find the 
quantity pt (y[z,],c) which, according to (2.7), determines the minimal guaranteed result 
61 (u"(.),Y[&]). Constructing the extremal strategy a[~] (.) on the basis of the quantity 

(I* (y[z*].c) (2.4) found, we obtain the optimal strategy uI~I(.). The strategy ~(~1 (.) in 
question can also be constructed using the numerical methods described in /2/. Thus we obtain 
for the problem of a minimum of the guaranteed result for the index yr(y_[6]), a reasonably 
effective method for the numerical construction of the controls 

u [t] = u0 (y [t,], E), ti < t < ti+r, i = 1, . . ., k + 1; t, = t,, h--to, t,v+l = ti 

carried out in the course of the actual control process. 
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